
PDF Viewer Component http://www.ocxt.com

Page 1 / 23

Edraw PDF Viewer Component v3.2

Edraw PDF Viewer Component is a light weight ActiveX Control which enables your application to

display and interact with PDF files. It is identical to Adobe Reader program and adds high speed

viewing of PDF documents to your applications easily. Read-Only Support for PDF Viewer! It is a great

solution for companies wishing to display read only PDF document to their employees while restricting

save or save to the underlying data. The control is lightweight and flexible, and gives developers new

possibilities for using PDF Reader in a custom solution.

Home Page: http://www.ocxt.com

Online Demo: http://www.ocxt.com/pdfdemo.php

Support Mail: support@ocxt.com

Sales online: https://www.regnow.com/softsell/nph-softsell.cgi?item=14621-1

It can be easily integrated into applications written in languages that support ActiveX control such as

Visual C++, Visual Basic, Delphi, C++ Builder and .Net languages. You can find the sample projects in the

install folder. You can also buy the full c++ source codes.

Name: PDF Viewer Component

CLSID: 44A8091F-8F01-43B7-8CF7-4BBA71E61E04

Version: 3,2,0,168

Release Date: 2010-10-13

OCX Size: 748KB

How to add PDF Viewer Component to your Visual Basic 6.0 project

1. From the Project Menu select Components…

2. Select control “PDF Viewer Component”

3. Click the OK Button

4. The control will now appear in your toolbox

5. Drag and drop the control on your form

There are some methods and properties to operator the component.

How to add PDF Viewer Component to your ASP.NET project

1. Open Visual Studio.

2. Create an ASP.NET project.

3. Don’t attempt to add the PDF Viewer Component to the Toolbox. It’s a client component. You can

add it as the HTML Object.

4. Copy Default.aspx and Default.aspx.vb to your project.

5. Add exist items…

6. Review the sample project in the install folder.

PDF Viewer Component http://www.ocxt.com

Page 2 / 23

How to add PDF Viewer Component to your .NET project

1. Open Visual Studio .NET

2. Right-click on the toolbox and select “Add/Remove Items…”

3. Select the COM Components Tab

4. Check PDF Viewer Component and click OK Button

5. The control should appear in the toolbox as “PDF Viewer Component”

6. Double-click on the control to add to your form

7. Resize and move the control on the form as desired

8. Add a button to the form

9. Double click on the button to access code editor and enter the following code within the Click

event: PDFViewer1.LoadFile("http://www.ocxt.com/demo/samples/sample.pdf")

10. Run the application and click on the button. The PDF should appear!

Code a solution using the control

The control is very customizable. You can change the color scheme of any of the control elements, as well

as determine the border type and a custom caption. These can be set at run time or design time as

needed.

Methods:

1. Load PDF File

Function void LoadFile (BSTR strPath);

Description: Opens a PDF file located on a drive or remote web server.

PDFViewer1. LoadFile “http://www.ocxt.com/demo/samples/pdfviewerref.pdf”

‘Or PDViewer1.LoadFile ”c:\test.pdf”

2. Print PDF File

Function: boolean PrintOut ();

Description: Prins the PDF file.

3. Save Documents

Function: boolean SaveCopyAs ();

Description: Saves the opened file to specify a save location.

PDF Viewer Component http://www.ocxt.com

Page 3 / 23

4. Close Document

Function: boolean Clear();

Description: Close the currently open document.

5. Protect Document

Function: void SetReadOnly ();

Description: Protects the current open pdf document. The method is valid for Adobe Reader 9.x

1. Hide the File toolbar

2. Disable the Copy button

3. Hide the Right click menu

4. Disable the Save, Print, Copy, Show/Hide Toolbar hot key.

PDFViewer1.SetReadOnly();

Tips:

If you want to set read only property when you load a pdf file, you need put the method at

OnDocumentOpened event.

<SCRIPT ID=clientEventHandlersJS LANGUAGE=javascript>

function PDFViewer1_NotifyCtrlReady()

{

 //document.PDFViewer1.LicenseName = "yourlicensename";

 //document.PDFViewer1.LicenseKey = "yourlicensename";

 document.PDFViewer1.LoadFile ("e:\\OA_Reference2.pdf");

}

function PDFViewer1_OnDocumentOpened(FileName)

{

 document.PDFViewer1.SetReadOnly();

}

</SCRIPT>

<SCRIPT LANGUAGE=javascript FOR=PDFViewer1 EVENT=NotifyCtrlReady>

<!--

PDFViewer1_NotifyCtrlReady();

//-->

</SCRIPT>

<SCRIPT LANGUAGE=javascript FOR=PDFViewer1 EVENT=OnDocumentOpened(FileName)>

<!--

PDFViewer1_OnDocumentOpened(FileName);

//-->

</SCRIPT>

6. Is Adobe Reader Installed

Function: boolean AdobeReaderIsInstalled ();

Description: Returns whether the client installs the PDF Reader.

PDF Viewer Component http://www.ocxt.com

Page 4 / 23

7. Get Adobe Reader Version

Function: BSTR GetVersions ();

Description: Returns the version number of the Adobe PDF Reader.

8. Go to the First Page

Function: boolean GotoFirstPage ();

Description: Goes to first page of the PDF document.

9. Go to the Previous Page

Function: boolean GotoPreviousPage ();

Description: Goes to previous page of the PDF document.

10. Go to the Next Page

Function: boolean GotoNextPage();

Description: Goes to next page of the PDF document.

11. Go to the last Page

Function: boolean GotoLastPage();

Description: Goes to last page of the PDF document.

12. Go to Page

Function: boolean GotoPage(long n);

Description: Goes to the page n of the PDF document.

13. GoForwardStack

Function: boolean GoForwardStack ();

Description: Forwards to the next viewing step.

14. GoBackwardStack

Function: boolean GoBackwardStack();

Description: Retraces to previous viewing step.

15. ApplyPageMode

Function: boolean ApplyPageMode (BSTR pageMode);

PDF Viewer Component http://www.ocxt.com

Page 5 / 23

Description: If the computer installed the Adobe Reader, the method will return true. Otherwise

return false.

Params:

Possible values: "none": displays the document, but does not display bookmarks or thumbnails

(default) "bookmarks": displays the document and bookmarks "thumbs": displays the

document and thumbnails.

16. ApplyLayoutMode

Function: boolean ApplyLayoutMode (BSTR layoutMode);

Description: Sets the layout mode for a page view according to the specified string.

Params:

Possible values: "DontCare": use the current user preference "SinglePage": use single page

mode (as it would have appeared in pre-Acrobat 3.0 viewers) "OneColumn": use one-column

continuous mode "TwoColumnLeft": use two-column continuous mode with the first page on

the left "TwoColumnRight": use two-column continuous mode with the first page on the right.

17. ApplyNamedDest

Function: boolean ApplyNamedDest (BSTR nameDest);

Description: Changes the page view to the named destination in the specified string.

Params: The named destination to which the viewer will go.

18. PrintWithDialog

Function: boolean PrintWithDialog ();

Description: Prints the document according to the options selected in a user dialog box. The

options include embedded printing (printing within a bounding rectangle on a given page), as

well as interactive printing to a specified printer. This method returns immediately, even if the

printing has not completed. NOTE: If security settings do not allow printing, this method will be

ignored.

19. ApplyZoom

Function: boolean ApplyZoom (float percent);

Description: Set the zoom factor for document page view.

Params: Specify the zoom factor in %.

20. ApplyZoomScroll

Function: boolean ApplyZoomScroll (float percent, float left, float top);

Description: Sets the zoom and scroll factors, using float or integer values. For example, a scale

value of 100 indicates a zoom value of 100%.

PDF Viewer Component http://www.ocxt.com

Page 6 / 23

Scroll values left and top are in a coordinate system where 0,0 represents the top left corner of

the visible page, regardless of document rotation.

21. ApplyView

Function: boolean ApplyView (BSTR viewMode);

Description: Sets the view of a page according to the specified string.

Params: Possible values: "Fit": fits the entire page within the window both vertically and

horizontally. "FitH": fits the entire width of the page within the window. "FitV": fits the entire

height of the page within the window. "FitB": fits the bounding box within the window both

vertically and horizontally. "FitBH": fits the entire width of the bounding box within the window.

"FitBV": fits the entire height of the bounding box within the window.

22. ApplyViewRect

Function: boolean ApplyViewRect(float left, float top, float width, float height)

Description: Sets the view rectangle according to the specified coordinates.

Param:

left - The upper left horizontal coordinate.

top - The vertical coordinate in the upper left corner.

width - The horizontal width of the rectangle.

height - The vertical height of the rectangle.

23. PrintPages

Function: boolean PrintPages(long from, long to);

Description: Prints the specified pages without displaying a user dialog box. The current

printer, page settings, and job settings are used.This method returns immediately, even if the

printing has not completed. NOTE: If security settings do not allow printing, this method will be

ignored.

Param:

from - The page number of the first page to be printed. The first page in a document is page 0.

to - The page number of the last page to be printed.

24. PrintPagesFit

Function: boolean PrintPagesFit(long from, long to, boolean shrinkToFit);

Description: Prints the specified pages without displaying a user dialog box. The current

printer, page settings, and job settings are used. This method returns immediately, even if the

printing has not completed. NOTE:If security settings do not allow printing, this method will be

ignored.

Param:

from - The page number of the first page to be printed. The first page in a document is page 0.

to - The page number of the last page to be printed.

PDF Viewer Component http://www.ocxt.com

Page 7 / 23

shrinkToFit - Specifies whether the pages will be shrunk, if necessary, to fit into the imageable

area of a page in the printer.

25. PrintAll

Function: boolean PrintAll ();

Description: Prints the entire document without displaying a user dialog box. The current

printer, page settings, and job settings are used. This method returns immediately, even if the

printing has not completed. NOTE: If security settings do not allow printing, this method will be

ignored.

26. PrintAllFit

Function: boolean PrintAllFit(boolean shrinkToFit);

Description: Prints the entire document without displaying a user dialog box, and the pages are

shrunk, if necessary, to fit into the imageable area of a page in the printer. The current printer,

page settings, and job settings are used. This method returns immediately, even if the printing

has not completed. NOTE: If security settings do not allow printing, this method will be

ignored.

Param: Specifies whether the pages will be shrunk, if necessary, to fit into the imageable area

of a page in the printer.

27. ApplyCurrentHightlight

Function: boolean ApplyCurrentHightlight(long a, long b, long c, long d);

Description: Highlights a specified rectangle on the displayed page. Use the page command

before this command.

The rectangle values are integers in a coordinate system where 0,0 represents the top left

corner of the visible page, regardless of document rotation.

28. DisableToolbar

Function: boolean DisableToolbar(boolean bDisable)

Description: Disables all the toolbars in the Adobe Reader. The method must be call after the

PDF file opened. The method is valid for Adobe Reader 9.x

Tips:

If you want to disable the toobars when you load a pdf file, you need put the method at

OnDocumentOpened event.

<SCRIPT ID=clientEventHandlersJS LANGUAGE=javascript>

function PDFViewer1_NotifyCtrlReady()

{

 document.PDFViewer1.LoadFile ("e:\\OA_Reference2.pdf");

}

function PDFViewer1_OnDocumentOpened(FileName)

PDF Viewer Component http://www.ocxt.com

Page 8 / 23

{

 document.PDFViewer1.DisableToolbar (true);

}

</SCRIPT>

<SCRIPT LANGUAGE=javascript FOR=PDFViewer1 EVENT=NotifyCtrlReady>

<!--

PDFViewer1_NotifyCtrlReady();

//-->

</SCRIPT>

<SCRIPT LANGUAGE=javascript FOR=PDFViewer1 EVENT=OnDocumentOpened(FileName)>

<!--

PDFViewer1_OnDocumentOpened(FileName);

//-->

</SCRIPT>

29. DisableToolbarRightClickMenu

Function: boolean DisableToolbarRightClickMenu(boolean bDisable);

Description: Disables the right click menu at the toolbars. The method must be call after the

PDF file opened. The method is valid for Adobe Reader 9.x

30. DisableViewRightClickMenu

Function: boolean DisableViewRightClickMenu (boolean bDisable);

Description: Disables the right click menu at the view. The method must be call after the PDF

file opened. The method is valid for Adobe Reader 9.x

31. DisableFileToolbar

Function: boolean DisableFileToolbar (boolean bDisable);

Description: Disables the File toolbars. The method must be call after the PDF file opened. The

method is valid for Adobe Reader 9.x and administrator priviledge.

32. DisableSaveToolbarButton

Function: boolean DisableSaveToolbarButton (boolean bDisable);

Description: Disables the Save button at the toolbars. The method must be call after the PDF

file opened. The method is valid for Adobe Reader 9.x and administrator priviledge.

33. DisablePrintToolbarButton

Function: boolean DisablePrintToolbarButton ();

Description: Disables the Print button at the toolbars. The method must be call after the PDF

file opened. The method is valid for Adobe Reader 9.x and administrator priviledge.

PDF Viewer Component http://www.ocxt.com

Page 9 / 23

34. DisableCopyToolbarButton

Function: boolean DisableCopyToolbarButton ();

Description: Disables the Copy button at the toolbars. The method must be call after the PDF

file opened. The method is valid for Adobe Reader 9.x and administrator priviledge.

35. DisableSpecialToolbarButton

Function: boolean DisableSpecialToolbarButton(BSTR nameButton);

Description: Disables the special button at the toolbars. The method must be call after the PDF

file opened. The method is valid for Adobe Reader 9.x and administrator priviledge.

Params:

nameButton: If you want to disable the special button at the toolbars, you need know the

button’s name in the Adobe Reader. For examples: the Save button has a name as

“SaveFileAs”. You can also use the follow values: Save, Print, CreatePDF, SendMail,

Collaborate, Search, Copy.

36. Disable Hotkey

Function: void DisableHotKeyPrint();

 void DisableHotKeySave();

 void DisableHotKeyCopy();

 void DisableHotKeyShowBookMarks();

 void DisableHotKeyShowThumnails();

 void DisableHotKeyShowToolbars();

 void DisableHotKeySearch();

Description: Disables the hotkeys at the Adobe Reader 9.x.

37. HTTP Upload File

Function: HRESULT HttpInit();

Description: Initializes the HTTP connection.

Function: HRESULT HttpAddpostString([in] BSTR Name, [in] BSTR Value);

Description: Adds the post parameter.

Parameters:

Name: The parameter name.

Value: The parameter value.

Function: HRESULT HttpAddPostOpenedFile([in, optional] VARIANT NewFileName);

Description: Adds the opened office file to post queue.
Parameters:

NewFileName: The new file name for the upload file.

PDF Viewer Component http://www.ocxt.com

Page 10 / 23

Function: HRESULT HttpAddPostFile([in] BSTR LocalFilePath, [in] BSTR NewFileName);

Description: Adds the post file.

Parameters:

LocalFilePath: The full file path needs to upload to the server. It the parameter is NULL, the

function will add the file which is opening in the component.

NewFileName: The new file name for the upload file.

Function: HRESULT HttpPost([in] BSTR WebUrl,[in, optional] VARIANT WebUsername, [in,

optional] VARIANT WebPassword);

Description: Sends the specified request to the HTTP server.

Parameters:

WebUrl: A string containing the web url from which uploads data via HTTP.

WebUsername: A string containing the user name.

WebPassword: A string containing the access password.

Return Value:

Nonzero if successful; otherwise 0.

The follow code is demo how to upload the opened file to server with the HTTP mode. It can also post

multiple files in a post request.

<script language="vbscript">

Sub UploadFile()

 OfficeViewer1.HttpInit

OfficeViewer1.HttpAddpostString "author", "anyname"

OfficeViewer1.HttpAddpostString "Data", "2008-10-6"

OfficeViewer1.HttpAddPostFile “c:\\test.pdf”
OfficeViewer1.HttpPost "http://localhost:1320/Samples/UploadAction.aspx"

End Sub

</script>

Note: If you try to save the opened file to remote server with the “HTTP” methods, you need write

a receipt page in your web server. Because the component uploads the file by HTTP mode. The

follow is some sample code.

ASP.NET:

//Default.aspx

<script language="vbscript">

Sub SavetoServer()
OfficeViewer1.HttpInit

OfficeViewer1.HttpAddpostString "author", "anyname"

OfficeViewer1.HttpAddpostString "Data", "2007-5-15"

OfficeViewer1.HttpAddPostOpenedFile
OfficeViewer1.HttpPost "http://localhost:1320/Samples/UploadAction.aspx"

'OfficeViewer1.Save "http://localhost:1320/UploadAction.aspx?author=name&Data=2”

PDF Viewer Component http://www.ocxt.com

Page 11 / 23

End Sub

</script>

//UploadAction.aspx.cs file

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.IO;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Xml;

using System.Drawing.Imaging;

using System.Text.RegularExpressions;

public partial class UploadAction : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (Request. QueryString["author"] == "name" && Request. QueryString["Data"] ==

"2")

 {

 Response.Write("0\n");

 Response.Write("We have receipted the right param from Office ActiveX

Control.");

 }

 if (Request.Files.Count == 0)

 {

 Response.Write("0\n");

 Response.Write("There isn't file to upload.");

 Response.End();

 }

 if (Request.Files[0].ContentLength == 0)

 {

 Response.Write("0\n");

 Response.Write("Failed to receipt the data.\n\n");

 Response.End();

 }

 string fullFileName = Server.MapPath(Request.Files[0].FileName);

 Request.Files[0].SaveAs(fullFileName);

 Response.Write("Upload Successfully.");

PDF Viewer Component http://www.ocxt.com

Page 12 / 23

 Response.End();

 }

}

PHP:

<?php

header("http/1.1 200 OK");

$user = iconv("UTF-8", "UNICODE", $_POST['user']);

$passwd = iconv("UTF-8", "UNICODE", $_POST['passwd']);

$sql = sprintf("username=%s passwd=%s", $user,$passwd);

echo $sql;

$sql = sprintf("file=%s size=%s error=%s tmp=%s",

$_FILES['trackdata']['name'],$_FILES['trackdata']['size'],$_FILES['trackdata']['error'],$_FILES[

'trackdata']['tmp_name']);

echo $sql;

$handle = fopen($_FILES['trackdata']['name'],"w+");

if($handle == FALSE)

{

 exit("Create file error!");

}

$handle2 = fopen($_FILES['trackdata']['tmp_name'],"r");

$data = fread($handle2,$_FILES['trackdata']['size']);

echo $data;

fwrite($handle,$data);

fclose($handle2);

fclose($handle);

exit(0);

?>

ASP: (review the full code in the install folder\samples\asp\)

<%@Language=VBScript %>

<!-- #include file="./include/upload.inc" -->

<!--#include file="./include/conn.asp"-->

<%

Set Uploader = New UpFile_Class

Uploader.NoAllowExt="cs;vb;js;exe"

Uploader.GetData (Request.TotalBytes)

Request.TotalBytes

if Uploader.isErr then

 select case Uploader.isErr

 case 1

 Response.Write "Fail to receipt the data."

 case 2

 Response.Write "The file is too big to upload"

 End select

PDF Viewer Component http://www.ocxt.com

Page 13 / 23

 'Response.End

End if

Dim id

If "" <> Request.QueryString("id") then

 id = Request.QueryString("id")

End if

if id<>0 then

 Sql="SELECT * from doc where doc.id = "&id

else

 Sql="SELECT * from doc"

End if

rs.Open Sql,conn,1, 3

for each formName in Uploader.file

 set file=Uploader.file(formName)

 If id<>0 then

 If("" = Request.QueryString("isAip")) Then

 rs("DocContent") = Uploader.FileData(formname)

 rs("DocID") = Uploader.Form("DocID")

 rs("DocTitle") = Uploader.Form("DocTitle")

 rs("DocType") = Uploader.Form("DocType")

 Else rs("AipContent") = Uploader.FileData(formname)

 rs("state") = 2

 End if

 Else

 rs.AddNew

 rs("DocID") = Uploader.Form("DocID")

 rs("DocTitle") = Uploader.Form("DocTitle")

 rs("DocContent") = Uploader.FileData(formname)

 rs("Docdate") = Now()

 rs("DocType") = Uploader.Form("DocType")

 rs("state") = 1

 End If

set file=nothing

rs.Update

exit for

next

rs.Close

Set rs=Nothing

conn.close

set conn = Nothing

Set Uploader = Nothing

%>

JSP:

jsp:

PDF Viewer Component http://www.ocxt.com

Page 14 / 23

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page language="java" import="com.jspsmart.upload.File>

<jsp:useBean id="mySmartUpload" scope="page" class="com.jspsmart.upload.SmartUpload"

/>

<%

String sPath="C:\\"

mySmartUpload.initialize(pageContext);

mySmartUpload.upload();

String TempName=mySmartUpload.getRequest().getParameter("TempName");

mySmartUpload.save(sPath);

File myFile =mySmartUpload.getFiles().getFile(0);

%>

38. HTTP Download File

Function: HRESULT HttpDownloadFileToTempDir([in] BSTR WebUrl, [in, optional] VARIANT

WebUsername, [in, optional] VARIANT WebPassword, [out,retval] VARIANT*vFilePath);

Description: Downloads a file from a remote server then save it to OA temporary directory with

HTTP.

Parameters:

WebUrl: A string containing the web url from which downloads data via HTTP.

WebUsername: A string containing the user name.

WebPassword: A string containing the access password.

Return Value:

Local temporary file path to save the download file.

The component provides the method to download file from a server then save to a local disk file. Support

Http and HTTPS.

<script language="vbscript">

Sub DownloadFile()

 Dim sPath;
 sPath = OfficeViewer1.HttpDownloadFileToTempDir “http://www.ocxt.com/demo/1.pdf”
 MsgBox sPath
End Sub

</script>

Note: You should make sure you the file exists in the web site firstly. A simple method is to enter the

WebUrl in the Internet Explore. If IE can download the file, the component can do it too.

FAQ: If you are using Windows 2003 as your server, you maybe need to add the mime types to

Internet Information Server.

39. HTTP Open File From Server Directory

PDF Viewer Component http://www.ocxt.com

Page 15 / 23

Function: HRESULT HttpOpenFileFromServerDir([in] BSTR WebUrl, [in, optional] VARIANT

ProgId, [in, optional] VARIANT WebUsername, [in, optional] VARIANT WebPassword);

Description: Opens a file from a remote server directory with HTTP/HTTPS.

Parameters:

WebUrl: A string containing the web url from which donwloads data via HTTP.

ProgId: Described as “CreateNew” function.

WebUsername: A string containing the user name.

WebPassword: A string containing the access password.

Return Value:

Nonzero if successful; otherwise 0.

The component provides the method to download file from a server then save to a local disk file. Support

Http and HTTPS.

<script language="vbscript">

Sub DownloadFile()

 OfficeViewer1.HttpOpenFileFromServerDir “http://www.ocxt.com/demo/sample.pdf”
End Sub

</script>

40. HTTP Open File From Stream

Function: HRESULT HttpOpenFileFromStream([in] BSTR WebUrl, [in, optional] VARIANT

ProgId, [in, optional] VARIANT WebUsername, [in, optional] VARIANT WebPassword);

Description: Opens a file from a stream with the HTTP/HTTPS.

Parameters:

WebUrl: A string containing the web url from which donwloads data via HTTP.

ProgId: Described as “CreateNew” function.

WebUsername: A string containing the user name.

WebPassword: A string containing the access password.

Return Value:

Nonzero if successful; otherwise 0.

Either you want to open an appointed file or open a file from database, for client side, all what you

need do is the same, like following:

<script language="vbscript">

Sub DownloadFile()
 m_oEdrawOfficeViewer.HttpInit();

 m_oEdrawOfficeViewer.HttpAddpostString(L"DocumentID", L"Test.pdf");

 m_oEdrawOfficeViewer.HttpOpenFileFromStream(strDownloadPath,varOpt,varOpt,varOp

t);
End Sub

</script>

Before you call function HttpOpenFileFromStream, you should do two things, one is to initialize

http for clearing all parameters and cookies in http, another thing is to appoint the file or database

PDF Viewer Component http://www.ocxt.com

Page 16 / 23

record. And then use HttpOpenFileFromStream to send the request to the destinated webpage. Before

HttpOpenFileFromStream send request, it will add a couple of parameters automatically.

m_OAHttp.AddPostArgument(L"EDA_GETSTREAMDATA", L"EDA_YES"); This couple of parameters tell

the destinated webpage OfficeViewer will received file as stream.

At the web side, webpage will decide to read which file or database reacord accordding to the post

parameters. And you should add boundary flag 'EDA_STREAMBOUNDARY' to file data, following is the

asp.net demo.

if (Request.Params["EDA_GETSTREAMDATA"] == "EDA_YES")

{

 String fullFileName = Server.MapPath(Request.Params["DocumentID"]);

 Byte[] fs = File.ReadAllBytes(fullFileName);
 Response.Write("Get Stream Successfully!");

 Response.Write("EDA_STREAMBOUNDARY");

 Response.BinaryWrite(fs);

 Response.Write("EDA_STREAMBOUNDARY");

}

asp:

If l_bWrSreamBoundary

Then Response.Write "EDA_STREAMBOUNDARY"

While Not l_stream.EOS And Response.IsClientConnected

Response.BinaryWrite(l_stream.Read(l_nChunkSize))

Wend l_stream.Close

If l_bWrSreamBoundary

Then Response.Write EDA_STREAMBOUNDARY"

41. FTP Upload/Download File

Function: HRESULT FtpConnect([in] BSTR WebUrl, [in, optional] VARIANT WebUsername, [in,

optional] VARIANT WebPassword);

Description: Creates a FTP connect.

Function: HRESULT FtpDownloadFile([in] BSTR RemoteFile, [in] BSTR LocalFile);

Description: Download a file from remote server then save it to local file with FTP.

Parameters:

RemoteFile: The remote file path which saves to FTP site.

LocalFile: The full file path which downloads to the local disk.

Function: HRESULT FtpUploadFile([in] BSTR LocalFile, [in] BSTR RemoteFile, [in, optional]

VARIANT OverWrite);

Description: Uploads a local disk file to remote server with FTP.

Parameters:

LocalFilePath: The full file path needs to upload to the server. It the parameter is NULL, the

function will add the file which is opening in the component.

PDF Viewer Component http://www.ocxt.com

Page 17 / 23

RemoteFile: The remote file path which saves to FTP site.

OverWrite: Overwrites the exsited file if the same file exists at the FTP server.

Function: HRESULT FtpDisConnect();

Description: Closes the FTP Connect.

Return Value:

Nonzero if successful; otherwise 0.

The follow code is demo how to download a file to local disk with the FTP mode.

<script language="vbscript">

Sub UploadFileviaFTP()

 OfficeViewer1. FtpConnect “ftp.ocxt.com”, “username”, “password”

OfficeViewer1. FtpDownloadFile “ftp.ocx.com/archieve/001.pdf”, “c:\temp.pdf”

OfficeViewer1. FtpDisConnect

End Sub

</script>

Properties:

1. File Path

Property: BSTR Path

Description: The property will save the open file path.

You can use the property to decide whether the component opened a PDF file.

If PDFViewer1.Path != “” Then

PDFViewer1. ApplyZoom 0.75

End If

2. Show or hide the toolbars

Property: boolean Toolbars

Description: Show/Hide whether toolbars should be displayed.

You can open a PDF document without toolbars as follow:

If OA1.GetToolbars = True Then

OA1.oolbars False

Else

OA1.Toolbars True

End If

3. Show or hide the navigation panes

PDF Viewer Component http://www.ocxt.com

Page 18 / 23

Property: boolean NavPanes

Description: Show/Hide whether navigation panels should be displayed.

4. Show or hide the messages

Property: boolean Messages

Description: Show/Hide whether messages should be displayed.

5. Show or hide the scrollbar

Property: boolean Scrollbar

Description: Show/Hide whether scrollbar should be displayed.

6. Show or hide the statusbar

Property: boolean Statusbar

Description: Show/Hide whether statusbar should be displayed.

7. Set the Parameters for the Open Document.

Property: BSTR NamedDest;

 BSTR Page;

 BSTR Comment;

 BSTR Zoom;

 BSTR View;

 BSTR ViewRect;

 BSTR PageMode;

 BSTR Search;

 BSTR Highlight;

Description: These properties have the same function with the above methods. If you special

the Zoom as 75, the component will open any PDF document with the default 75% view zoom.

If you special the Search as “Flowchart”, the component will highlight the Flowchart word when

it opens a PDF document.

8. Modify the Border Style

Property: short BorderStyle;

Description: Set the caption of the titlebar.

PDF Viewer Component http://www.ocxt.com

Page 19 / 23

The property allows the developer to modify the border style. It can be the follow value:

typedef enum BorderStyle

 {

 BorderNone = 0,

 BorderFlat,

 Border3D,

 Border3DThin

 } BorderStyle;

<object classid="clsid:053AFEBA-D968-435F-B557-19FF76372B1B" id="EDrawOfficeViewer1"

width="657" height="452">

 <param name="BorderStyle" value="2">

</object>

9. Set the Color Scheme

Properties:

OLE_COLOR BorderColor;

OLE_COLOR BackColor;

OLE_COLOR ForeColor;

OLE_COLOR TitlebarColor;

OLE_COLOR TitlebarTextColor;

Description: Set the color scheme for the component.

<object classid="clsid:053AFEBA-D968-435F-B557-19FF76372B1B" id="EDrawOfficeViewer1"

width="657" height="452">

 <param name="BorderColor" value="-2147483632">

 <param name="BackColor" value="-2147483643">

 <param name="ForeColor" value="-2147483640">

 <param name="TitlebarColor" value="-2147483635">

 <param name="TitlebarTextColor" value="-2147483634">

</object>

10. Modify the TitlebarText

Property: BSTR TitlebarText;

Description: Set the caption of the titlebar.

The property allows the developer to modify the caption in the titlebar.

<object classid="clsid: 44A8091F-8F01-43B7-8CF7-4BBA71E61E04" id="PDFViewer1"

width="657" height="452">

 <param name=" TitlebarText " value="PDF Viewer Component">

</object>

PDF Viewer Component http://www.ocxt.com

Page 20 / 23

11. Set the Color Scheme

Property: BSTR LicenseName
Description: Gets/Sets the license name.

12. License Key

Property: BSTR LicenseKey
Description: Gets/Sets the license key.

Events:

1. Ready to Open Document Event

Event: HRESULT NotifyCtrlReady();

Description: Ready to open document.

When the component finished the initialization the NotifyCtrlReady event is raised. The event allows you

to open a new document after the component has released all the resources are ready to open a new

document.

HTML + JScript

<html>

<script language=javascript id=clientEventHandlersJS>

function NotifyCtrlReadyEvent ()

{
 PDFViewer1.Open “http://www.ocxt.com/demo/sample.pdf”
}

</script>

<body>

<object classid="clsid: 44A8091F-8F01-43B7-8CF7-4BBA71E61E04 " id="PDFViewer1"

width="657" height="452">

 <param name="Toolbars" value="0">

</object>

</body>

<script language="JScript" for=PDFViewer1 event=" NotifyCtrlReady ()">

NotifyCtrlReadyEvent ();

</script>

</html>

2. Document Opened Event

Event: void OnDocumentOpened([in] BSTR FileName);

Description: Called when document is opened or new document added.

PDF Viewer Component http://www.ocxt.com

Page 21 / 23

Every time a user opened a file successfully, the OnDocumentOpened event is raised. The event allows

you to override the default behavior for the control and supply your own custom actions and dialog boxes

to do normal file operations.

HTML + JScript

<script language="JScript" for=PDFViewer1 event=" OnDocumentOpened(FileName)">

OnDocumentOpenedEvent(FileName);

</script>

<script language=javascript>

function OnDocumentOpenedEvent(FileName)

{

 Alert(“Respond the Document Opened Event.”);

}

</script>

3. Document Close Event

Event: void OnDocumentClosed();

Description: Called when document is closed.

Every time a user closed a file successfully, the OnDocumentClosed event is raised. The event allows you

to override the default behavior for the control and supply your own custom actions and dialog boxes to

do normal file operations.

HTML + JScript

<script language="JScript" for= PDFViewer1 event=" OnDocumentClosed()">

OnDocumentClosedEvent();

</script>

<script language=javascript>

function OnDocumentClosedEvent()

{

 Alert(“Respond the Document Close Event.”);

}

</script>

4. Before Document Closed Event

Event: void BeforeDocumentClosed([in,out] VARIANT* Cancel);

Description: Called before document is closed (may be canceled).

Every time before a user closed a document the OnActivationChange event is raised. The event allows you

to override the default behavior for the control and supply your own custom actions and dialog boxes to

do normal file operations.

HTML + JScript

<script language="JScript" for= PDFViewer1 event=" BeforeDocumentClosed (Cancel)">

OnBeforeDocumentClosedEvent(GoingActive);

</script>

PDF Viewer Component http://www.ocxt.com

Page 22 / 23

<script language=javascript>

function OnBeforeDocumentClosedEvent (GoingActive)

{

 Alert(“Respond the Before Document Closed Event.”);

}

</script>

5. Before Document Saved Event

Event: void BeforeDocumentSaved([in,out] VARIANT* Cancel);

Description: Called before document is saved (may be canceled).

Every time a user opens a new document or closes a document the OnActivationChange event is raised.

The event allows you to override the default behavior for the control and supply your own custom actions

and dialog boxes to do normal file operations.

HTML + JScript

<script language="JScript" for= PDFViewer1 event=" BeforeDocumentSaved(Cancel)">

OnBeforeDocumentSavedEvent(GoingActive);

</script>

<script language=javascript>

function OnBeforeDocumentSavedEvent (Cancel)

{

 Alert(“Respond the Before Document Saved Event.”);

}

</script>

6. Before Right Click the Window

Event: HRESULT OnWindowBeforeRightClick();

Description: Called before right click the component. The event needs the

DisableViewRightClickMenu method or DisableToolbarRightClickMenu method is called.

7. Before Double Click the Window

Event: HRESULT OnWindowBeforeDoubleClick ();

Description: Called before double click the component.

8. Before Download File

Event: HRESULT BeforeDownloadFile ();

Description: Called before downloading the file.

PDF Viewer Component http://www.ocxt.com

Page 23 / 23

9. Download File Completed

Event: HRESULT DownloadFileComplete ();

Description: Called when the file was downloaded completely.

Other ActiveX Controls
Edraw Office Viewer Component – Edraw Office Viewer Component contains a
standard ActiveX control that acts as an ActiveX document container for hosting Office
documents (including Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft
Project, and Microsoft Visio documents) in a custom form or Web page. The control is
lightweight and flexible, and gives developers new possibilities for using Office in a custom
solution.

Edraw Flowchart ActiveX Control – Do you want to learn how to draw? Now you can
online! Learn how to draw like a local application with Edraw Flowchart ActiveX Control that
lets you quickly build basic flowcharts, organizational charts, business charts, hr diagram,
work flow, programming flowchart and network diagrams.

